There are 1 questions in this calculation: for each question, the 10 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 10th\ derivative\ of\ function\ xln(1 + \frac{1}{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xln(\frac{1}{x} + 1)\\\\ &\color{blue}{The\ 10th\ derivative\ of\ function:} \\=&\frac{-362880}{(\frac{1}{x} + 1)^{10}x^{19}} + \frac{3225600}{(\frac{1}{x} + 1)^{9}x^{18}} - \frac{12700800}{(\frac{1}{x} + 1)^{8}x^{17}} + \frac{29030400}{(\frac{1}{x} + 1)^{7}x^{16}} - \frac{42336000}{(\frac{1}{x} + 1)^{6}x^{15}} + \frac{40642560}{(\frac{1}{x} + 1)^{5}x^{14}} - \frac{25401600}{(\frac{1}{x} + 1)^{4}x^{13}} + \frac{9676800}{(\frac{1}{x} + 1)^{3}x^{12}} - \frac{1814400}{(\frac{1}{x} + 1)^{2}x^{11}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !