Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(2x - {e}^{x}{y}^{3})}{(3{y}^{2}{e}^{x}*2)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{3}x{e}^{(-x)}}{y^{2}} - \frac{1}{6}y\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{3}x{e}^{(-x)}}{y^{2}} - \frac{1}{6}y\right)}{dx}\\=&\frac{\frac{1}{3}{e}^{(-x)}}{y^{2}} + \frac{\frac{1}{3}x({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))}{y^{2}} + 0\\=&\frac{{e}^{(-x)}}{3y^{2}} - \frac{x{e}^{(-x)}}{3y^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return