There are 1 questions in this calculation: for each question, the 1 derivative of y is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 4yarctan(2y) - ln(4{y}^{2} + 1)\ with\ respect\ to\ y:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4yarctan(2y) - ln(4y^{2} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4yarctan(2y) - ln(4y^{2} + 1)\right)}{dy}\\=&4arctan(2y) + 4y(\frac{(2)}{(1 + (2y)^{2})}) - \frac{(4*2y + 0)}{(4y^{2} + 1)}\\=&4arctan(2y) + \frac{8y}{(4y^{2} + 1)} - \frac{8y}{(4y^{2} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !