There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ H(\frac{x}{A} - \frac{sin(\frac{2Bx}{A})}{(2B)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{Hx}{A} - \frac{\frac{1}{2}Hsin(\frac{2Bx}{A})}{B}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{Hx}{A} - \frac{\frac{1}{2}Hsin(\frac{2Bx}{A})}{B}\right)}{dx}\\=&\frac{H}{A} - \frac{\frac{1}{2}Hcos(\frac{2Bx}{A})*2B}{BA}\\=& - \frac{Hcos(\frac{2Bx}{A})}{A} + \frac{H}{A}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !