There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2h{(C - (x - A - B))}^{2}}{({C}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{4hx}{C} - \frac{4hAx}{C^{2}} - \frac{4hBx}{C^{2}} + \frac{2hx^{2}}{C^{2}} + \frac{4hAB}{C^{2}} + \frac{4hB}{C} + \frac{2hA^{2}}{C^{2}} + \frac{4hA}{C} + \frac{2hB^{2}}{C^{2}} + 2h\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{4hx}{C} - \frac{4hAx}{C^{2}} - \frac{4hBx}{C^{2}} + \frac{2hx^{2}}{C^{2}} + \frac{4hAB}{C^{2}} + \frac{4hB}{C} + \frac{2hA^{2}}{C^{2}} + \frac{4hA}{C} + \frac{2hB^{2}}{C^{2}} + 2h\right)}{dx}\\=& - \frac{4h}{C} - \frac{4hA}{C^{2}} - \frac{4hB}{C^{2}} + \frac{2h*2x}{C^{2}} + 0 + 0 + 0 + 0 + 0 + 0\\=& - \frac{4hA}{C^{2}} - \frac{4hB}{C^{2}} + \frac{4hx}{C^{2}} - \frac{4h}{C}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !