Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{h(1 + (cos(\frac{P(x - A - B)}{C})))}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}hcos(\frac{Px}{C} - \frac{PA}{C} - \frac{PB}{C}) + \frac{1}{2}h\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}hcos(\frac{Px}{C} - \frac{PA}{C} - \frac{PB}{C}) + \frac{1}{2}h\right)}{dx}\\=&\frac{1}{2}h*-sin(\frac{Px}{C} - \frac{PA}{C} - \frac{PB}{C})(\frac{P}{C} + 0 + 0) + 0\\=&\frac{-hPsin(\frac{Px}{C} - \frac{PA}{C} - \frac{PB}{C})}{2C}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return