There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ h(1 - (\frac{(x - A - B)}{C}) + \frac{sin(\frac{2P(x - A - B)}{C})}{(2P)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{2}hsin(\frac{2Px}{C} - \frac{2AP}{C} - \frac{2BP}{C})}{P} - \frac{hx}{C} + \frac{hA}{C} + \frac{hB}{C} + h\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{2}hsin(\frac{2Px}{C} - \frac{2AP}{C} - \frac{2BP}{C})}{P} - \frac{hx}{C} + \frac{hA}{C} + \frac{hB}{C} + h\right)}{dx}\\=&\frac{\frac{1}{2}hcos(\frac{2Px}{C} - \frac{2AP}{C} - \frac{2BP}{C})(\frac{2P}{C} + 0 + 0)}{P} - \frac{h}{C} + 0 + 0 + 0\\=&\frac{hcos(\frac{2Px}{C} - \frac{2AP}{C} - \frac{2BP}{C})}{C} - \frac{h}{C}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !