There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ axxxxx + bxxxx + cxxx + dxx + fx + g\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ax^{5} + bx^{4} + cx^{3} + dx^{2} + fx + g\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ax^{5} + bx^{4} + cx^{3} + dx^{2} + fx + g\right)}{dx}\\=&a*5x^{4} + b*4x^{3} + c*3x^{2} + d*2x + f + 0\\=&5ax^{4} + 4bx^{3} + 3cx^{2} + 2dx + f\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 5ax^{4} + 4bx^{3} + 3cx^{2} + 2dx + f\right)}{dx}\\=&5a*4x^{3} + 4b*3x^{2} + 3c*2x + 2d + 0\\=&20ax^{3} + 12bx^{2} + 6cx + 2d\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 20ax^{3} + 12bx^{2} + 6cx + 2d\right)}{dx}\\=&20a*3x^{2} + 12b*2x + 6c + 0\\=&60ax^{2} + 24bx + 6c\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 60ax^{2} + 24bx + 6c\right)}{dx}\\=&60a*2x + 24b + 0\\=&120ax + 24b\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !