There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ sh(sh(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sh(sh(x))\right)}{dx}\\=&ch(sh(x))ch(x)\\=&ch(x)ch(sh(x))\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( ch(x)ch(sh(x))\right)}{dx}\\=&sh(x)ch(sh(x)) + ch(x)sh(sh(x))ch(x)\\=&sh(x)ch(sh(x)) + sh(sh(x))ch^{2}(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( sh(x)ch(sh(x)) + sh(sh(x))ch^{2}(x)\right)}{dx}\\=&ch(x)ch(sh(x)) + sh(x)sh(sh(x))ch(x) + ch(sh(x))ch(x)ch^{2}(x) + sh(sh(x))*2ch(x)sh(x)\\=&ch(x)ch(sh(x)) + sh(sh(x))sh(x)ch(x) + ch^{3}(x)ch(sh(x)) + 2sh(x)sh(sh(x))ch(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( ch(x)ch(sh(x)) + sh(sh(x))sh(x)ch(x) + ch^{3}(x)ch(sh(x)) + 2sh(x)sh(sh(x))ch(x)\right)}{dx}\\=&sh(x)ch(sh(x)) + ch(x)sh(sh(x))ch(x) + ch(sh(x))ch(x)sh(x)ch(x) + sh(sh(x))ch(x)ch(x) + sh(sh(x))sh(x)sh(x) + 3ch^{2}(x)sh(x)ch(sh(x)) + ch^{3}(x)sh(sh(x))ch(x) + 2ch(x)sh(sh(x))ch(x) + 2sh(x)ch(sh(x))ch(x)ch(x) + 2sh(x)sh(sh(x))sh(x)\\=&sh(x)ch(sh(x))ch^{2}(x) + 5sh(x)ch^{2}(x)ch(sh(x)) + 4sh(sh(x))ch^{2}(x) + sh(sh(x))sh^{2}(x) + sh(sh(x))ch^{4}(x) + sh(x)ch(sh(x)) + 2sh^{2}(x)sh(sh(x))\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !