There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ h(10({(\frac{x}{A})}^{3}) - 15({(\frac{x}{A})}^{4}) + 6({(\frac{x}{A})}^{5}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{10hx^{3}}{A^{3}} - \frac{15hx^{4}}{A^{4}} + \frac{6hx^{5}}{A^{5}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{10hx^{3}}{A^{3}} - \frac{15hx^{4}}{A^{4}} + \frac{6hx^{5}}{A^{5}}\right)}{dx}\\=&\frac{10h*3x^{2}}{A^{3}} - \frac{15h*4x^{3}}{A^{4}} + \frac{6h*5x^{4}}{A^{5}}\\=&\frac{30hx^{2}}{A^{3}} - \frac{60hx^{3}}{A^{4}} + \frac{30hx^{4}}{A^{5}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !