There are 1 questions in this calculation: for each question, the 1 derivative of a is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{c}{(1 + a{e}^{(-bx)})}\ with\ respect\ to\ a:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{c}{(a{e}^{(-bx)} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{c}{(a{e}^{(-bx)} + 1)}\right)}{da}\\=&(\frac{-({e}^{(-bx)} + a({e}^{(-bx)}((0)ln(e) + \frac{(-bx)(0)}{(e)})) + 0)}{(a{e}^{(-bx)} + 1)^{2}})c + 0\\=&\frac{-c{e}^{(-bx)}}{(a{e}^{(-bx)} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !