There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ log_{10}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{10}^{x}\right)}{dx}\\=&(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{10}^{x}}{(10)})}{(ln(10))})\\=&\frac{1}{xln(10)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{xln(10)}\right)}{dx}\\=&\frac{-1}{x^{2}ln(10)} + \frac{-0}{xln^{2}(10)(10)}\\=&\frac{-1}{x^{2}ln(10)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{x^{2}ln(10)}\right)}{dx}\\=&\frac{--2}{x^{3}ln(10)} - \frac{-0}{x^{2}ln^{2}(10)(10)}\\=&\frac{2}{x^{3}ln(10)}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{2}{x^{3}ln(10)}\right)}{dx}\\=&\frac{2*-3}{x^{4}ln(10)} + \frac{2*-0}{x^{3}ln^{2}(10)(10)}\\=&\frac{-6}{x^{4}ln(10)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !