There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ Bsin(ax + b) + k\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( Bsin(ax + b) + k\right)}{dx}\\=&Bcos(ax + b)(a + 0) + 0\\=&Bacos(ax + b)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( Bacos(ax + b)\right)}{dx}\\=&Ba*-sin(ax + b)(a + 0)\\=&-Ba^{2}sin(ax + b)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -Ba^{2}sin(ax + b)\right)}{dx}\\=&-Ba^{2}cos(ax + b)(a + 0)\\=&-Ba^{3}cos(ax + b)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -Ba^{3}cos(ax + b)\right)}{dx}\\=&-Ba^{3}*-sin(ax + b)(a + 0)\\=&Ba^{4}sin(ax + b)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !