There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x(x - 1)(x - sqrt(3))(x - sqrt(2))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}sqrt(3)sqrt(2) - xsqrt(3)sqrt(2) - x^{3}sqrt(2) + x^{2}sqrt(2) + x^{2}sqrt(3) - x^{3}sqrt(3) - x^{3} + x^{4}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}sqrt(3)sqrt(2) - xsqrt(3)sqrt(2) - x^{3}sqrt(2) + x^{2}sqrt(2) + x^{2}sqrt(3) - x^{3}sqrt(3) - x^{3} + x^{4}\right)}{dx}\\=&2xsqrt(3)sqrt(2) + x^{2}*0*\frac{1}{2}*3^{\frac{1}{2}}sqrt(2) + x^{2}sqrt(3)*0*\frac{1}{2}*2^{\frac{1}{2}} - sqrt(3)sqrt(2) - x*0*\frac{1}{2}*3^{\frac{1}{2}}sqrt(2) - xsqrt(3)*0*\frac{1}{2}*2^{\frac{1}{2}} - 3x^{2}sqrt(2) - x^{3}*0*\frac{1}{2}*2^{\frac{1}{2}} + 2xsqrt(2) + x^{2}*0*\frac{1}{2}*2^{\frac{1}{2}} + 2xsqrt(3) + x^{2}*0*\frac{1}{2}*3^{\frac{1}{2}} - 3x^{2}sqrt(3) - x^{3}*0*\frac{1}{2}*3^{\frac{1}{2}} - 3x^{2} + 4x^{3}\\=&2xsqrt(3)sqrt(2) - sqrt(3)sqrt(2) - 3x^{2}sqrt(2) + 2xsqrt(2) + 2xsqrt(3) - 3x^{2}sqrt(3) - 3x^{2} + 4x^{3}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !