Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {arcsin(x)}^{20000000}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arcsin^{20000000}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arcsin^{20000000}(x)\right)}{dx}\\=&(\frac{20000000arcsin^{19999999}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})\\=&\frac{20000000arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{20000000arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&20000000(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})arcsin^{19999999}(x) + \frac{20000000(\frac{19999999arcsin^{19999998}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{20000000xarcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{20000000xarcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&20000000(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})xarcsin^{19999999}(x) + \frac{20000000arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{20000000x(\frac{19999999arcsin^{19999998}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{399999980000000(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{399999980000000(\frac{19999998arcsin^{19999997}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{60000000x^{2}arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{20000000arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000xarcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{799999960000000xarcsin^{19999998}(x)}{(-x^{2} + 1)^{2}} - \frac{5888127989905401344arcsin^{19999997}(x)}{(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{60000000x^{2}arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{20000000arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000xarcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{799999960000000xarcsin^{19999998}(x)}{(-x^{2} + 1)^{2}} - \frac{5888127989905401344arcsin^{19999997}(x)}{(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&60000000(\frac{\frac{-5}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{7}{2}}})x^{2}arcsin^{19999999}(x) + \frac{60000000*2xarcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{60000000x^{2}(\frac{19999999arcsin^{19999998}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{5}{2}}} + 20000000(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})arcsin^{19999999}(x) + \frac{20000000(\frac{19999999arcsin^{19999998}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})xarcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})xarcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{399999980000000arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000x(\frac{19999998arcsin^{19999997}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + 799999960000000(\frac{-2(-2x + 0)}{(-x^{2} + 1)^{3}})xarcsin^{19999998}(x) + \frac{799999960000000arcsin^{19999998}(x)}{(-x^{2} + 1)^{2}} + \frac{799999960000000x(\frac{19999998arcsin^{19999997}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{2}} - \frac{5888127989905401344(\frac{-(-2x + 0)}{(-x^{2} + 1)^{2}})arcsin^{19999997}(x)}{(-x^{2} + 1)^{\frac{1}{2}}} - \frac{5888127989905401344(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})arcsin^{19999997}(x)}{(-x^{2} + 1)} - \frac{5888127989905401344(\frac{19999997arcsin^{19999996}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{300000000x^{3}arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{7}{2}}} + \frac{180000000xarcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{1199999940000000x^{2}arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{5}{2}}} + \frac{399999980000000arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{4799999760000000x^{2}arcsin^{19999998}(x)}{(-x^{2} + 1)^{3}} + \frac{1199999940000000arcsin^{19999998}(x)}{(-x^{2} + 1)^{2}} - \frac{5888127989905401344xarcsin^{19999997}(x)}{(-x^{2} + 1)^{2}(-x^{2} + 1)^{\frac{1}{2}}} + \frac{6670488093898748928xarcsin^{19999997}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{2}} + \frac{782360103993347584xarcsin^{19999997}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} - \frac{3706688176411381248arcsin^{19999996}(x)}{(-x^{2} + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return