There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ e^{lxg}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{lgx}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{lgx}\right)}{dx}\\=&e^{lgx}lg\\=&lge^{lgx}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( lge^{lgx}\right)}{dx}\\=&lge^{lgx}lg\\=&l^{2}g^{2}e^{lgx}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( l^{2}g^{2}e^{lgx}\right)}{dx}\\=&l^{2}g^{2}e^{lgx}lg\\=&l^{3}g^{3}e^{lgx}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( l^{3}g^{3}e^{lgx}\right)}{dx}\\=&l^{3}g^{3}e^{lgx}lg\\=&l^{4}g^{4}e^{lgx}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !