Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of o is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (l + o + g)(l + o - g)(l - o + g)(l - o - g)\ with\ respect\ to\ o:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - 2l^{2}o^{2} - 2l^{2}g^{2} + l^{4} + o^{4} - 2g^{2}o^{2} + g^{4}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - 2l^{2}o^{2} - 2l^{2}g^{2} + l^{4} + o^{4} - 2g^{2}o^{2} + g^{4}\right)}{do}\\=& - 2l^{2}*2o + 0 + 0 + 4o^{3} - 2g^{2}*2o + 0\\=& - 4l^{2}o + 4o^{3} - 4g^{2}o\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - 4l^{2}o + 4o^{3} - 4g^{2}o\right)}{do}\\=& - 4l^{2} + 4*3o^{2} - 4g^{2}\\=& - 4l^{2} + 12o^{2} - 4g^{2}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( - 4l^{2} + 12o^{2} - 4g^{2}\right)}{do}\\=& - 0 + 12*2o + 0\\=&24o\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 24o\right)}{do}\\=&24\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return