There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (x - X - 1)(xx - x + XX - X - xX + 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3} - 2x^{2} + 2X^{2}x - 2Xx^{2} + 2x + Xx - X^{3} - 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3} - 2x^{2} + 2X^{2}x - 2Xx^{2} + 2x + Xx - X^{3} - 1\right)}{dx}\\=&3x^{2} - 2*2x + 2X^{2} - 2X*2x + 2 + X + 0 + 0\\=&3x^{2} - 4x - 4Xx + 2X^{2} + X + 2\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 3x^{2} - 4x - 4Xx + 2X^{2} + X + 2\right)}{dx}\\=&3*2x - 4 - 4X + 0 + 0 + 0\\=&6x - 4X - 4\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 6x - 4X - 4\right)}{dx}\\=&6 + 0 + 0\\=&6\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 6\right)}{dx}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !