Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ e^{{2}^{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{{2}^{x}}\right)}{dx}\\=&e^{{2}^{x}}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))\\=&{2}^{x}e^{{2}^{x}}ln(2)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {2}^{x}e^{{2}^{x}}ln(2)\right)}{dx}\\=&({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))e^{{2}^{x}}ln(2) + {2}^{x}e^{{2}^{x}}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln(2) + \frac{{2}^{x}e^{{2}^{x}}*0}{(2)}\\=&{2}^{x}e^{{2}^{x}}ln^{2}(2) + {2}^{(2x)}e^{{2}^{x}}ln^{2}(2)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( {2}^{x}e^{{2}^{x}}ln^{2}(2) + {2}^{(2x)}e^{{2}^{x}}ln^{2}(2)\right)}{dx}\\=&({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))e^{{2}^{x}}ln^{2}(2) + {2}^{x}e^{{2}^{x}}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln^{2}(2) + \frac{{2}^{x}e^{{2}^{x}}*2ln(2)*0}{(2)} + ({2}^{(2x)}((2)ln(2) + \frac{(2x)(0)}{(2)}))e^{{2}^{x}}ln^{2}(2) + {2}^{(2x)}e^{{2}^{x}}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln^{2}(2) + \frac{{2}^{(2x)}e^{{2}^{x}}*2ln(2)*0}{(2)}\\=&{2}^{x}e^{{2}^{x}}ln^{3}(2) + 3 * {2}^{(2x)}e^{{2}^{x}}ln^{3}(2) + {2}^{(3x)}e^{{2}^{x}}ln^{3}(2)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( {2}^{x}e^{{2}^{x}}ln^{3}(2) + 3 * {2}^{(2x)}e^{{2}^{x}}ln^{3}(2) + {2}^{(3x)}e^{{2}^{x}}ln^{3}(2)\right)}{dx}\\=&({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))e^{{2}^{x}}ln^{3}(2) + {2}^{x}e^{{2}^{x}}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln^{3}(2) + \frac{{2}^{x}e^{{2}^{x}}*3ln^{2}(2)*0}{(2)} + 3({2}^{(2x)}((2)ln(2) + \frac{(2x)(0)}{(2)}))e^{{2}^{x}}ln^{3}(2) + 3 * {2}^{(2x)}e^{{2}^{x}}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln^{3}(2) + \frac{3 * {2}^{(2x)}e^{{2}^{x}}*3ln^{2}(2)*0}{(2)} + ({2}^{(3x)}((3)ln(2) + \frac{(3x)(0)}{(2)}))e^{{2}^{x}}ln^{3}(2) + {2}^{(3x)}e^{{2}^{x}}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln^{3}(2) + \frac{{2}^{(3x)}e^{{2}^{x}}*3ln^{2}(2)*0}{(2)}\\=&{2}^{x}e^{{2}^{x}}ln^{4}(2) + 7 * {2}^{(2x)}e^{{2}^{x}}ln^{4}(2) + 6 * {2}^{(3x)}e^{{2}^{x}}ln^{4}(2) + {2}^{(4x)}e^{{2}^{x}}ln^{4}(2)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return