Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of r is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ Rrha{r}^{i}l\ with\ respect\ to\ r:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = Rhalr{r}^{i}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( Rhalr{r}^{i}\right)}{dr}\\=&Rhal{r}^{i} + Rhalr({r}^{i}((0)ln(r) + \frac{(i)(1)}{(r)}))\\=&Rhal{r}^{i} + Rhail{r}^{i}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( Rhal{r}^{i} + Rhail{r}^{i}\right)}{dr}\\=&Rhal({r}^{i}((0)ln(r) + \frac{(i)(1)}{(r)})) + Rhail({r}^{i}((0)ln(r) + \frac{(i)(1)}{(r)}))\\=&\frac{Rhail{r}^{i}}{r} + \frac{Rhai^{2}l{r}^{i}}{r}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{Rhail{r}^{i}}{r} + \frac{Rhai^{2}l{r}^{i}}{r}\right)}{dr}\\=&\frac{Rhail*-{r}^{i}}{r^{2}} + \frac{Rhail({r}^{i}((0)ln(r) + \frac{(i)(1)}{(r)}))}{r} + \frac{Rhai^{2}l*-{r}^{i}}{r^{2}} + \frac{Rhai^{2}l({r}^{i}((0)ln(r) + \frac{(i)(1)}{(r)}))}{r}\\=&\frac{-Rhail{r}^{i}}{r^{2}} + \frac{Rhai^{3}l{r}^{i}}{r^{2}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-Rhail{r}^{i}}{r^{2}} + \frac{Rhai^{3}l{r}^{i}}{r^{2}}\right)}{dr}\\=&\frac{-Rhail*-2{r}^{i}}{r^{3}} - \frac{Rhail({r}^{i}((0)ln(r) + \frac{(i)(1)}{(r)}))}{r^{2}} + \frac{Rhai^{3}l*-2{r}^{i}}{r^{3}} + \frac{Rhai^{3}l({r}^{i}((0)ln(r) + \frac{(i)(1)}{(r)}))}{r^{2}}\\=&\frac{2Rhail{r}^{i}}{r^{3}} - \frac{Rhai^{2}l{r}^{i}}{r^{3}} - \frac{2Rhai^{3}l{r}^{i}}{r^{3}} + \frac{Rhai^{4}l{r}^{i}}{r^{3}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return