Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ log_{e^{2}}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{e^{2}}^{x}\right)}{dx}\\=&(\frac{(\frac{(1)}{(x)} - \frac{(e^{2}*0)log_{e^{2}}^{x}}{(e^{2})})}{(ln(e^{2}))})\\=&\frac{1}{xln(e^{2})}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{xln(e^{2})}\right)}{dx}\\=&\frac{-1}{x^{2}ln(e^{2})} + \frac{-e^{2}*0}{xln^{2}(e^{2})(e^{2})}\\=&\frac{-1}{x^{2}ln(e^{2})}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{x^{2}ln(e^{2})}\right)}{dx}\\=&\frac{--2}{x^{3}ln(e^{2})} - \frac{-e^{2}*0}{x^{2}ln^{2}(e^{2})(e^{2})}\\=&\frac{2}{x^{3}ln(e^{2})}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{2}{x^{3}ln(e^{2})}\right)}{dx}\\=&\frac{2*-3}{x^{4}ln(e^{2})} + \frac{2*-e^{2}*0}{x^{3}ln^{2}(e^{2})(e^{2})}\\=&\frac{-6}{x^{4}ln(e^{2})}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return