There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{1}{(2t)})e^{\frac{v}{(-2t)}}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{2}e^{\frac{\frac{1}{-2}v}{t}}}{t}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{2}e^{\frac{\frac{1}{-2}v}{t}}}{t}\right)}{dt}\\=&\frac{\frac{1}{2}*-e^{\frac{\frac{1}{-2}v}{t}}}{t^{2}} + \frac{\frac{1}{2}e^{\frac{\frac{1}{-2}v}{t}}*\frac{1}{-2}v*-1}{tt^{2}}\\=&\frac{-e^{\frac{\frac{1}{-2}v}{t}}}{2t^{2}} + \frac{ve^{\frac{\frac{1}{-2}v}{t}}}{4t^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !