Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ A{x}^{4} + B{x}^{3} + C{x}^{2} + Dx + e\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = Ax^{4} + Bx^{3} + Cx^{2} + Dx + e\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( Ax^{4} + Bx^{3} + Cx^{2} + Dx + e\right)}{dx}\\=&A*4x^{3} + B*3x^{2} + C*2x + D + 0\\=&4Ax^{3} + 3Bx^{2} + 2Cx + D\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4Ax^{3} + 3Bx^{2} + 2Cx + D\right)}{dx}\\=&4A*3x^{2} + 3B*2x + 2C + 0\\=&12Ax^{2} + 6Bx + 2C\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 12Ax^{2} + 6Bx + 2C\right)}{dx}\\=&12A*2x + 6B + 0\\=&24Ax + 6B\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 24Ax + 6B\right)}{dx}\\=&24A + 0\\=&24A\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return