There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (x - 1)(x - 2)(x - 3)(x - 4)(x - 5)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{5} - 15x^{4} + 85x^{3} - 225x^{2} + 274x - 120\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{5} - 15x^{4} + 85x^{3} - 225x^{2} + 274x - 120\right)}{dx}\\=&5x^{4} - 15*4x^{3} + 85*3x^{2} - 225*2x + 274 + 0\\=&5x^{4} - 60x^{3} + 255x^{2} - 450x + 274\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 5x^{4} - 60x^{3} + 255x^{2} - 450x + 274\right)}{dx}\\=&5*4x^{3} - 60*3x^{2} + 255*2x - 450 + 0\\=&20x^{3} - 180x^{2} + 510x - 450\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 20x^{3} - 180x^{2} + 510x - 450\right)}{dx}\\=&20*3x^{2} - 180*2x + 510 + 0\\=&60x^{2} - 360x + 510\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 60x^{2} - 360x + 510\right)}{dx}\\=&60*2x - 360 + 0\\=&120x - 360\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !