There are 1 questions in this calculation: for each question, the 4 derivative of π is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ co(sin(π))\ with\ respect\ to\ π:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = cosin(π)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cosin(π)\right)}{dπ}\\=&cocos(π)\\=&cocos(π)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( cocos(π)\right)}{dπ}\\=&co*-sin(π)\\=&-cosin(π)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -cosin(π)\right)}{dπ}\\=&-cocos(π)\\=&-cocos(π)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -cocos(π)\right)}{dπ}\\=&-co*-sin(π)\\=&cosin(π)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !