Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of π is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ co(sqrt(π))\ with\ respect\ to\ π:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = cosqrt(π)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cosqrt(π)\right)}{dπ}\\=&\frac{co*\frac{1}{2}}{(π)^{\frac{1}{2}}}\\=&\frac{co}{2π^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{co}{2π^{\frac{1}{2}}}\right)}{dπ}\\=&\frac{co*\frac{-1}{2}}{2π^{\frac{3}{2}}}\\=&\frac{-co}{4π^{\frac{3}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-co}{4π^{\frac{3}{2}}}\right)}{dπ}\\=&\frac{-co*\frac{-3}{2}}{4π^{\frac{5}{2}}}\\=&\frac{3co}{8π^{\frac{5}{2}}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{3co}{8π^{\frac{5}{2}}}\right)}{dπ}\\=&\frac{3co*\frac{-5}{2}}{8π^{\frac{7}{2}}}\\=&\frac{-15co}{16π^{\frac{7}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return