There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{(yy + zz - xx)}{(2yz)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{\frac{1}{2}x^{2}}{yz} + \frac{\frac{1}{2}z}{y} + \frac{\frac{1}{2}y}{z}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{\frac{1}{2}x^{2}}{yz} + \frac{\frac{1}{2}z}{y} + \frac{\frac{1}{2}y}{z}\right)}{dx}\\=& - \frac{\frac{1}{2}*2x}{yz} + 0 + 0\\=& - \frac{x}{yz}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{x}{yz}\right)}{dx}\\=& - \frac{1}{yz}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( - \frac{1}{yz}\right)}{dx}\\=& - 0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( - 0\right)}{dx}\\=& - 0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !