Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (a{x}^{2} - (4a + 1)x + 4a + 3)e^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ax^{2}e^{x} - 4axe^{x} - xe^{x} + 4ae^{x} + 3e^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ax^{2}e^{x} - 4axe^{x} - xe^{x} + 4ae^{x} + 3e^{x}\right)}{dx}\\=&a*2xe^{x} + ax^{2}e^{x} - 4ae^{x} - 4axe^{x} - e^{x} - xe^{x} + 4ae^{x} + 3e^{x}\\=&-2axe^{x} + ax^{2}e^{x} + 2e^{x} - xe^{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -2axe^{x} + ax^{2}e^{x} + 2e^{x} - xe^{x}\right)}{dx}\\=&-2ae^{x} - 2axe^{x} + a*2xe^{x} + ax^{2}e^{x} + 2e^{x} - e^{x} - xe^{x}\\=&-2ae^{x} + ax^{2}e^{x} + e^{x} - xe^{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return