There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ e^{(ax) + xx - ax}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{x^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{x^{2}}\right)}{dx}\\=&e^{x^{2}}*2x\\=&2xe^{x^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2xe^{x^{2}}\right)}{dx}\\=&2e^{x^{2}} + 2xe^{x^{2}}*2x\\=&2e^{x^{2}} + 4x^{2}e^{x^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 2e^{x^{2}} + 4x^{2}e^{x^{2}}\right)}{dx}\\=&2e^{x^{2}}*2x + 4*2xe^{x^{2}} + 4x^{2}e^{x^{2}}*2x\\=&12xe^{x^{2}} + 8x^{3}e^{x^{2}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 12xe^{x^{2}} + 8x^{3}e^{x^{2}}\right)}{dx}\\=&12e^{x^{2}} + 12xe^{x^{2}}*2x + 8*3x^{2}e^{x^{2}} + 8x^{3}e^{x^{2}}*2x\\=&12e^{x^{2}} + 48x^{2}e^{x^{2}} + 16x^{4}e^{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !