Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{(2{x}^{10} + 3x - log_{5}^{x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(2x^{10} + 3x - log_{5}^{x})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(2x^{10} + 3x - log_{5}^{x})}\right)}{dx}\\=&({e}^{(2x^{10} + 3x - log_{5}^{x})}((2*10x^{9} + 3 - (\frac{(\frac{(1)}{(x)} - \frac{(0)log_{5}^{x}}{(5)})}{(ln(5))}))ln(e) + \frac{(2x^{10} + 3x - log_{5}^{x})(0)}{(e)}))\\=& - \frac{{e}^{(2x^{10} + 3x - log_{5}^{x})}}{xln(5)} + 20x^{9}{e}^{(2x^{10} + 3x - log_{5}^{x})} + 3{e}^{(2x^{10} + 3x - log_{5}^{x})}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return