There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ e^{2}xsin(3x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xe^{2}sin(3x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xe^{2}sin(3x)\right)}{dx}\\=&e^{2}sin(3x) + xe^{2}*0sin(3x) + xe^{2}cos(3x)*3\\=&e^{2}sin(3x) + 3xe^{2}cos(3x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( e^{2}sin(3x) + 3xe^{2}cos(3x)\right)}{dx}\\=&e^{2}*0sin(3x) + e^{2}cos(3x)*3 + 3e^{2}cos(3x) + 3xe^{2}*0cos(3x) + 3xe^{2}*-sin(3x)*3\\=&6e^{2}cos(3x) - 9xe^{2}sin(3x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !