There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {π}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {π}^{x}\right)}{dx}\\=&({π}^{x}((1)ln(π) + \frac{(x)(0)}{(π)}))\\=&{π}^{x}ln(π)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {π}^{x}ln(π)\right)}{dx}\\=&({π}^{x}((1)ln(π) + \frac{(x)(0)}{(π)}))ln(π) + \frac{{π}^{x}*0}{(π)}\\=&{π}^{x}ln^{2}(π)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( {π}^{x}ln^{2}(π)\right)}{dx}\\=&({π}^{x}((1)ln(π) + \frac{(x)(0)}{(π)}))ln^{2}(π) + \frac{{π}^{x}*2ln(π)*0}{(π)}\\=&{π}^{x}ln^{3}(π)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( {π}^{x}ln^{3}(π)\right)}{dx}\\=&({π}^{x}((1)ln(π) + \frac{(x)(0)}{(π)}))ln^{3}(π) + \frac{{π}^{x}*3ln^{2}(π)*0}{(π)}\\=&{π}^{x}ln^{4}(π)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !