There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (2n - 3){(\frac{1}{2})}^{(n - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2n{\frac{1}{2}}^{(n - 1)} - 3 * {\frac{1}{2}}^{(n - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2n{\frac{1}{2}}^{(n - 1)} - 3 * {\frac{1}{2}}^{(n - 1)}\right)}{dx}\\=&2n({\frac{1}{2}}^{(n - 1)}((0 + 0)ln(\frac{1}{2}) + \frac{(n - 1)(0)}{(\frac{1}{2})})) - 3({\frac{1}{2}}^{(n - 1)}((0 + 0)ln(\frac{1}{2}) + \frac{(n - 1)(0)}{(\frac{1}{2})}))\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !