There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({abs((x - cos(2x)))}^{(x + sin(x))})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {abs(x - cos(2x))}^{(x + sin(x))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {abs(x - cos(2x))}^{(x + sin(x))}\right)}{dx}\\=&({abs(x - cos(2x))}^{(x + sin(x))}((1 + cos(x))ln(abs(x - cos(2x))) + \frac{(x + sin(x))(0)}{(abs(x - cos(2x)))}))\\=&{abs(x - cos(2x))}^{(x + sin(x))}ln(abs(x - cos(2x)))cos(x) + {abs(x - cos(2x))}^{(x + sin(x))}ln(abs(x - cos(2x)))\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !