Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of n is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ th(e^{n})\ with\ respect\ to\ n:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( th(e^{n})\right)}{dn}\\=&(1 - th^{2}(e^{n}))e^{n}\\=& - e^{n}th^{2}(e^{n}) + e^{n}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - e^{n}th^{2}(e^{n}) + e^{n}\right)}{dn}\\=& - e^{n}th^{2}(e^{n}) - e^{n}*2th(e^{n})(1 - th^{2}(e^{n}))e^{n} + e^{n}\\=& - e^{n}th^{2}(e^{n}) - 2e^{{n}*{2}}th(e^{n}) + 2e^{{n}*{2}}th^{3}(e^{n}) + e^{n}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( - e^{n}th^{2}(e^{n}) - 2e^{{n}*{2}}th(e^{n}) + 2e^{{n}*{2}}th^{3}(e^{n}) + e^{n}\right)}{dn}\\=& - e^{n}th^{2}(e^{n}) - e^{n}*2th(e^{n})(1 - th^{2}(e^{n}))e^{n} - 2*2e^{n}e^{n}th(e^{n}) - 2e^{{n}*{2}}(1 - th^{2}(e^{n}))e^{n} + 2*2e^{n}e^{n}th^{3}(e^{n}) + 2e^{{n}*{2}}*3th^{2}(e^{n})(1 - th^{2}(e^{n}))e^{n} + e^{n}\\=& - e^{n}th^{2}(e^{n}) - 6e^{{n}*{2}}th(e^{n}) + 6e^{{n}*{2}}th^{3}(e^{n}) + 8e^{{n}*{3}}th^{2}(e^{n}) - 6e^{{n}*{3}}th^{4}(e^{n}) - 2e^{{n}*{3}} + e^{n}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( - e^{n}th^{2}(e^{n}) - 6e^{{n}*{2}}th(e^{n}) + 6e^{{n}*{2}}th^{3}(e^{n}) + 8e^{{n}*{3}}th^{2}(e^{n}) - 6e^{{n}*{3}}th^{4}(e^{n}) - 2e^{{n}*{3}} + e^{n}\right)}{dn}\\=& - e^{n}th^{2}(e^{n}) - e^{n}*2th(e^{n})(1 - th^{2}(e^{n}))e^{n} - 6*2e^{n}e^{n}th(e^{n}) - 6e^{{n}*{2}}(1 - th^{2}(e^{n}))e^{n} + 6*2e^{n}e^{n}th^{3}(e^{n}) + 6e^{{n}*{2}}*3th^{2}(e^{n})(1 - th^{2}(e^{n}))e^{n} + 8*3e^{{n}*{2}}e^{n}th^{2}(e^{n}) + 8e^{{n}*{3}}*2th(e^{n})(1 - th^{2}(e^{n}))e^{n} - 6*3e^{{n}*{2}}e^{n}th^{4}(e^{n}) - 6e^{{n}*{3}}*4th^{3}(e^{n})(1 - th^{2}(e^{n}))e^{n} - 2*3e^{{n}*{2}}e^{n} + e^{n}\\=& - e^{n}th^{2}(e^{n}) - 14e^{{n}*{2}}th(e^{n}) + 14e^{{n}*{2}}th^{3}(e^{n}) + 48e^{{n}*{3}}th^{2}(e^{n}) - 36e^{{n}*{3}}th^{4}(e^{n}) + 16e^{{n}*{4}}th(e^{n}) - 40e^{{n}*{4}}th^{3}(e^{n}) + 24e^{{n}*{4}}th^{5}(e^{n}) - 12e^{{n}*{3}} + e^{n}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return