Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ cos(sin(tan(sin(cos({x}^{6} - 100) + {\frac{1}{x}}^{100}))))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = cos(sin(tan(sin(cos(x^{6} - 100) + \frac{1}{x^{100}}))))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cos(sin(tan(sin(cos(x^{6} - 100) + \frac{1}{x^{100}}))))\right)}{dx}\\=&-sin(sin(tan(sin(cos(x^{6} - 100) + \frac{1}{x^{100}}))))cos(tan(sin(cos(x^{6} - 100) + \frac{1}{x^{100}})))sec^{2}(sin(cos(x^{6} - 100) + \frac{1}{x^{100}}))(cos(cos(x^{6} - 100) + \frac{1}{x^{100}})(-sin(x^{6} - 100)(6x^{5} + 0) + \frac{-100}{x^{101}}))\\=&6x^{5}sin(x^{6} - 100)sin(sin(tan(sin(cos(x^{6} - 100) + \frac{1}{x^{100}}))))cos(cos(x^{6} - 100) + \frac{1}{x^{100}})cos(tan(sin(cos(x^{6} - 100) + \frac{1}{x^{100}})))sec^{2}(sin(cos(x^{6} - 100) + \frac{1}{x^{100}})) + \frac{100sin(sin(tan(sin(cos(x^{6} - 100) + \frac{1}{x^{100}}))))cos(cos(x^{6} - 100) + \frac{1}{x^{100}})cos(tan(sin(cos(x^{6} - 100) + \frac{1}{x^{100}})))sec^{2}(sin(cos(x^{6} - 100) + \frac{1}{x^{100}}))}{x^{101}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return