There are 1 questions in this calculation: for each question, the 1 derivative of y is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(2y - 2)}{(2y - 3)} - y\ with\ respect\ to\ y:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2y}{(2y - 3)} - \frac{2}{(2y - 3)} - y\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2y}{(2y - 3)} - \frac{2}{(2y - 3)} - y\right)}{dy}\\=&2(\frac{-(2 + 0)}{(2y - 3)^{2}})y + \frac{2}{(2y - 3)} - 2(\frac{-(2 + 0)}{(2y - 3)^{2}}) - 1\\=&\frac{-4y}{(2y - 3)^{2}} + \frac{4}{(2y - 3)^{2}} + \frac{2}{(2y - 3)} - 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !