Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {(3bbbb - 16(abbc - aacc - aabd + 4aaaf))}^{2} - (9bb - 24ac){(bbb - 4abc + 8aad)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - 2048ba^{5}df + 448b^{3}a^{3}cd - 1024ba^{4}c^{2}d - 320b^{2}a^{4}d^{2} + 2048b^{2}a^{4}cf + 16b^{4}a^{2}c^{2} + 1536a^{5}cd^{2} - 384b^{4}a^{3}f - 128b^{2}a^{3}c^{3} - 2048a^{5}c^{2}f + 256a^{4}c^{4} - 48b^{5}a^{2}d + 4096a^{6}f^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - 2048ba^{5}df + 448b^{3}a^{3}cd - 1024ba^{4}c^{2}d - 320b^{2}a^{4}d^{2} + 2048b^{2}a^{4}cf + 16b^{4}a^{2}c^{2} + 1536a^{5}cd^{2} - 384b^{4}a^{3}f - 128b^{2}a^{3}c^{3} - 2048a^{5}c^{2}f + 256a^{4}c^{4} - 48b^{5}a^{2}d + 4096a^{6}f^{2}\right)}{dx}\\=& - 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0\\=&0\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return