Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ pln(1 + \frac{W}{x}) + qln(1 - \frac{Q}{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = pln(\frac{W}{x} + 1) + qln(\frac{-Q}{x} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( pln(\frac{W}{x} + 1) + qln(\frac{-Q}{x} + 1)\right)}{dx}\\=&\frac{p(\frac{W*-1}{x^{2}} + 0)}{(\frac{W}{x} + 1)} + \frac{q(\frac{-Q*-1}{x^{2}} + 0)}{(\frac{-Q}{x} + 1)}\\=&\frac{-pW}{(\frac{W}{x} + 1)x^{2}} + \frac{qQ}{(\frac{-Q}{x} + 1)x^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return