There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ pln(1 + \frac{W}{x}) + (1 - p)ln(1 - \frac{Q}{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = pln(\frac{W}{x} + 1) + ln(\frac{-Q}{x} + 1) - pln(\frac{-Q}{x} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( pln(\frac{W}{x} + 1) + ln(\frac{-Q}{x} + 1) - pln(\frac{-Q}{x} + 1)\right)}{dx}\\=&\frac{p(\frac{W*-1}{x^{2}} + 0)}{(\frac{W}{x} + 1)} + \frac{(\frac{-Q*-1}{x^{2}} + 0)}{(\frac{-Q}{x} + 1)} - \frac{p(\frac{-Q*-1}{x^{2}} + 0)}{(\frac{-Q}{x} + 1)}\\=&\frac{-pW}{(\frac{W}{x} + 1)x^{2}} + \frac{Q}{(\frac{-Q}{x} + 1)x^{2}} - \frac{pQ}{(\frac{-Q}{x} + 1)x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !