Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (co)sec(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = cosec(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cosec(x)\right)}{dx}\\=&cosec(x)tan(x)\\=&cotan(x)sec(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( cotan(x)sec(x)\right)}{dx}\\=&cosec^{2}(x)(1)sec(x) + cotan(x)sec(x)tan(x)\\=&cosec^{3}(x) + cotan^{2}(x)sec(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( cosec^{3}(x) + cotan^{2}(x)sec(x)\right)}{dx}\\=&co*3sec^{3}(x)tan(x) + co*2tan(x)sec^{2}(x)(1)sec(x) + cotan^{2}(x)sec(x)tan(x)\\=&5cotan(x)sec^{3}(x) + cotan^{3}(x)sec(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 5cotan(x)sec^{3}(x) + cotan^{3}(x)sec(x)\right)}{dx}\\=&5cosec^{2}(x)(1)sec^{3}(x) + 5cotan(x)*3sec^{3}(x)tan(x) + co*3tan^{2}(x)sec^{2}(x)(1)sec(x) + cotan^{3}(x)sec(x)tan(x)\\=&5cosec^{5}(x) + 18cotan^{2}(x)sec^{3}(x) + cotan^{4}(x)sec(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return