There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ co(tan(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = cotan(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cotan(x)\right)}{dx}\\=&cosec^{2}(x)(1)\\=&cosec^{2}(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( cosec^{2}(x)\right)}{dx}\\=&co*2sec^{2}(x)tan(x)\\=&2cotan(x)sec^{2}(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 2cotan(x)sec^{2}(x)\right)}{dx}\\=&2cosec^{2}(x)(1)sec^{2}(x) + 2cotan(x)*2sec^{2}(x)tan(x)\\=&2cosec^{4}(x) + 4cotan^{2}(x)sec^{2}(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 2cosec^{4}(x) + 4cotan^{2}(x)sec^{2}(x)\right)}{dx}\\=&2co*4sec^{4}(x)tan(x) + 4co*2tan(x)sec^{2}(x)(1)sec^{2}(x) + 4cotan^{2}(x)*2sec^{2}(x)tan(x)\\=&16cotan(x)sec^{4}(x) + 8cotan^{3}(x)sec^{2}(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !