There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (4{x}^{2}){e}^{(3 - x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4x^{2}{e}^{(-x + 3)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4x^{2}{e}^{(-x + 3)}\right)}{dx}\\=&4*2x{e}^{(-x + 3)} + 4x^{2}({e}^{(-x + 3)}((-1 + 0)ln(e) + \frac{(-x + 3)(0)}{(e)}))\\=&8x{e}^{(-x + 3)} - 4x^{2}{e}^{(-x + 3)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !