Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 - ln(-xln(x) - {x}^{2}))}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{ln(-xln(x) - x^{2})}{x} + \frac{1}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{ln(-xln(x) - x^{2})}{x} + \frac{1}{x}\right)}{dx}\\=& - \frac{-ln(-xln(x) - x^{2})}{x^{2}} - \frac{(-ln(x) - \frac{x}{(x)} - 2x)}{x(-xln(x) - x^{2})} + \frac{-1}{x^{2}}\\=&\frac{ln(-xln(x) - x^{2})}{x^{2}} + \frac{ln(x)}{(-xln(x) - x^{2})x} + \frac{1}{(-xln(x) - x^{2})x} + \frac{2}{(-xln(x) - x^{2})} - \frac{1}{x^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return