There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{4}{({x}^{4})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{4}{x^{4}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{4}{x^{4}}\right)}{dx}\\=&\frac{4*-4}{x^{5}}\\=&\frac{-16}{x^{5}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-16}{x^{5}}\right)}{dx}\\=&\frac{-16*-5}{x^{6}}\\=&\frac{80}{x^{6}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{80}{x^{6}}\right)}{dx}\\=&\frac{80*-6}{x^{7}}\\=&\frac{-480}{x^{7}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-480}{x^{7}}\right)}{dx}\\=&\frac{-480*-7}{x^{8}}\\=&\frac{3360}{x^{8}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !