There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{2}x(x + {y}^{2} + 2y)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}e^{2} + y^{2}xe^{2} + 2yxe^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}e^{2} + y^{2}xe^{2} + 2yxe^{2}\right)}{dx}\\=&2xe^{2} + x^{2}*2e*0 + y^{2}e^{2} + y^{2}x*2e*0 + 2ye^{2} + 2yx*2e*0\\=&2xe^{2} + y^{2}e^{2} + 2ye^{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !