Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (ln(x) - 1){\frac{1}{ln(x)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{ln(x)} - \frac{1}{ln^{2}(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{ln(x)} - \frac{1}{ln^{2}(x)}\right)}{dx}\\=&\frac{-1}{ln^{2}(x)(x)} - \frac{-2}{ln^{3}(x)(x)}\\=&\frac{-1}{xln^{2}(x)} + \frac{2}{xln^{3}(x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{xln^{2}(x)} + \frac{2}{xln^{3}(x)}\right)}{dx}\\=&\frac{--1}{x^{2}ln^{2}(x)} - \frac{-2}{xln^{3}(x)(x)} + \frac{2*-1}{x^{2}ln^{3}(x)} + \frac{2*-3}{xln^{4}(x)(x)}\\=&\frac{1}{x^{2}ln^{2}(x)} - \frac{6}{x^{2}ln^{4}(x)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{x^{2}ln^{2}(x)} - \frac{6}{x^{2}ln^{4}(x)}\right)}{dx}\\=&\frac{-2}{x^{3}ln^{2}(x)} + \frac{-2}{x^{2}ln^{3}(x)(x)} - \frac{6*-2}{x^{3}ln^{4}(x)} - \frac{6*-4}{x^{2}ln^{5}(x)(x)}\\=&\frac{-2}{x^{3}ln^{2}(x)} - \frac{2}{x^{3}ln^{3}(x)} + \frac{12}{x^{3}ln^{4}(x)} + \frac{24}{x^{3}ln^{5}(x)}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2}{x^{3}ln^{2}(x)} - \frac{2}{x^{3}ln^{3}(x)} + \frac{12}{x^{3}ln^{4}(x)} + \frac{24}{x^{3}ln^{5}(x)}\right)}{dx}\\=&\frac{-2*-3}{x^{4}ln^{2}(x)} - \frac{2*-2}{x^{3}ln^{3}(x)(x)} - \frac{2*-3}{x^{4}ln^{3}(x)} - \frac{2*-3}{x^{3}ln^{4}(x)(x)} + \frac{12*-3}{x^{4}ln^{4}(x)} + \frac{12*-4}{x^{3}ln^{5}(x)(x)} + \frac{24*-3}{x^{4}ln^{5}(x)} + \frac{24*-5}{x^{3}ln^{6}(x)(x)}\\=&\frac{6}{x^{4}ln^{2}(x)} + \frac{10}{x^{4}ln^{3}(x)} - \frac{30}{x^{4}ln^{4}(x)} - \frac{120}{x^{4}ln^{5}(x)} - \frac{120}{x^{4}ln^{6}(x)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return