There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (2x + 1)(3{x}^{2} + 1)({x}^{3} + 7)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 6x^{6} + 43x^{3} + 2x^{4} + 14x + 3x^{5} + 21x^{2} + 7\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 6x^{6} + 43x^{3} + 2x^{4} + 14x + 3x^{5} + 21x^{2} + 7\right)}{dx}\\=&6*6x^{5} + 43*3x^{2} + 2*4x^{3} + 14 + 3*5x^{4} + 21*2x + 0\\=&36x^{5} + 129x^{2} + 8x^{3} + 15x^{4} + 42x + 14\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !