Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ({m}^{2} + 3m){x}^{2} - (2{m}^{3} + 8{m}^{2} + 7m - 1)x - ({m}^{2} + 2m - 3)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = m^{2}x^{2} + 3mx^{2} - 2m^{3}x - 8m^{2}x - 7mx + x - m^{2} - 2m + 3\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( m^{2}x^{2} + 3mx^{2} - 2m^{3}x - 8m^{2}x - 7mx + x - m^{2} - 2m + 3\right)}{dx}\\=&m^{2}*2x + 3m*2x - 2m^{3} - 8m^{2} - 7m + 1 + 0 + 0 + 0\\=&2m^{2}x + 6mx - 2m^{3} - 8m^{2} - 7m + 1\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2m^{2}x + 6mx - 2m^{3} - 8m^{2} - 7m + 1\right)}{dx}\\=&2m^{2} + 6m + 0 + 0 + 0 + 0\\=&2m^{2} + 6m\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return