Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ ({e}^{x} - 1 - x){\frac{1}{x}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{e}^{x}}{x^{2}} - \frac{1}{x} - \frac{1}{x^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{x}}{x^{2}} - \frac{1}{x} - \frac{1}{x^{2}}\right)}{dx}\\=&\frac{-2{e}^{x}}{x^{3}} + \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{x^{2}} - \frac{-1}{x^{2}} - \frac{-2}{x^{3}}\\=&\frac{-2{e}^{x}}{x^{3}} + \frac{{e}^{x}}{x^{2}} + \frac{1}{x^{2}} + \frac{2}{x^{3}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2{e}^{x}}{x^{3}} + \frac{{e}^{x}}{x^{2}} + \frac{1}{x^{2}} + \frac{2}{x^{3}}\right)}{dx}\\=&\frac{-2*-3{e}^{x}}{x^{4}} - \frac{2({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{x^{3}} + \frac{-2{e}^{x}}{x^{3}} + \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{x^{2}} + \frac{-2}{x^{3}} + \frac{2*-3}{x^{4}}\\=&\frac{6{e}^{x}}{x^{4}} - \frac{4{e}^{x}}{x^{3}} + \frac{{e}^{x}}{x^{2}} - \frac{2}{x^{3}} - \frac{6}{x^{4}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{6{e}^{x}}{x^{4}} - \frac{4{e}^{x}}{x^{3}} + \frac{{e}^{x}}{x^{2}} - \frac{2}{x^{3}} - \frac{6}{x^{4}}\right)}{dx}\\=&\frac{6*-4{e}^{x}}{x^{5}} + \frac{6({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{x^{4}} - \frac{4*-3{e}^{x}}{x^{4}} - \frac{4({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{x^{3}} + \frac{-2{e}^{x}}{x^{3}} + \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{x^{2}} - \frac{2*-3}{x^{4}} - \frac{6*-4}{x^{5}}\\=&\frac{-24{e}^{x}}{x^{5}} + \frac{18{e}^{x}}{x^{4}} - \frac{6{e}^{x}}{x^{3}} + \frac{{e}^{x}}{x^{2}} + \frac{6}{x^{4}} + \frac{24}{x^{5}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-24{e}^{x}}{x^{5}} + \frac{18{e}^{x}}{x^{4}} - \frac{6{e}^{x}}{x^{3}} + \frac{{e}^{x}}{x^{2}} + \frac{6}{x^{4}} + \frac{24}{x^{5}}\right)}{dx}\\=&\frac{-24*-5{e}^{x}}{x^{6}} - \frac{24({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{x^{5}} + \frac{18*-4{e}^{x}}{x^{5}} + \frac{18({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{x^{4}} - \frac{6*-3{e}^{x}}{x^{4}} - \frac{6({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{x^{3}} + \frac{-2{e}^{x}}{x^{3}} + \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{x^{2}} + \frac{6*-4}{x^{5}} + \frac{24*-5}{x^{6}}\\=&\frac{120{e}^{x}}{x^{6}} - \frac{96{e}^{x}}{x^{5}} + \frac{36{e}^{x}}{x^{4}} - \frac{8{e}^{x}}{x^{3}} + \frac{{e}^{x}}{x^{2}} - \frac{24}{x^{5}} - \frac{120}{x^{6}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return